Once the simulations are completed, we can use the summary.simpm()
function to summarize the results. The function will print out the important information contained in the simPM()
object.
In this hypothetical example, the summary.simpm()
function prints out the following:
summary(wave.lgm)
[1] "=================results summary================" convergence.rate weakest.param.name weakest.para.power cost.design miss.waves 1 1.000 s~sprt 0.828 13650 2 2 0.999 s~sprt 0.862 9000 3
[1] "=================Optimal design================="
convergence.rate weakest.param.name weakest.para.power cost.design miss.waves
2 0.999 s~sprt 0.862 9000 3
[1] "=================Optimal design for focal parameters=================" Estimate Average Estimate SD Average SE Power (Not equal 0) Std Est Std Est SD i~sprt -1.5001637 0.11853266 0.11738935 1.000 -0.5217401 0.03515221 s~sprt -0.2015112 0.06651828 0.06750681 0.862 -0.1411624 0.04615719 i~~s -0.8928260 0.18286992 0.17397815 0.999 -0.2585775 0.04777923 Std Ave SE Average Param Average Bias Coverage Average FMI1 SD FMI1 i~sprt 0.03482613 -1.5 -0.0001637438 0.950 0.007683133 0.002622483 s~sprt 0.04674602 -0.2 -0.0015111960 0.956 0.019456644 0.003455831 i~~s 0.04514329 -0.9 0.0071740326 0.937 0.034027477 0.006533191
[1] "=================Optimal patterns===============" BDI1 BDI2 BDI3 BDI4 BDI5 BDI6 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 1 completers 0 0 0 0 0 0
[1] "=================Optimal probs==================" [1] 0.2 0.2 0.2 0.2 0.2
[1] "=================Optimal ns====================" [1] 90 90 90 90 90
To view more details of the simulation results for the optimal PHPM design, we can extract the simsem
output and use the summary()
function as follows. It will output the model fit and parameter estimates over replications for the selected design.
summary(wave.lgm$opt.output)