One-sample t-test
setwd("/Volumes/EDMS451/Software Instructions")
dat <- data.frame(var1 = c(4.1, 5.2, 7.5, 8.2, 9.3, 3.1, 1.6,
6.0, 7.4, 6.5, 5.1, 9.6, 2.8, 5.9,
5.1, 1.2, 2.5, 5.4, 7.7, 8.9, 3.0
))
colnames(dat) <- "June1234" # change the variable name
dat # view the data
June1234
1 4.1
2 5.2
3 7.5
4 8.2
5 9.3
6 3.1
7 1.6
8 6.0
9 7.4
10 6.5
11 5.1
12 9.6
13 2.8
14 5.9
15 5.1
16 1.2
17 2.5
18 5.4
19 7.7
20 8.9
21 3.0
alternative = "two.sided"
conf.level = 0.99
t.test(dat$June1234, alternative = "two.sided", mu = 5, conf.level = 0.99)
One Sample t-test
data: dat$June1234
t = 0.95626, df = 20, p-value = 0.3504
alternative hypothesis: true mean is not equal to 5
99 percent confidence interval:
3.955815 7.101328
sample estimates:
mean of x
5.528571
A slightly different set-up:
conf.level = 0.95
t.test(dat$June1234, alternative = "two.sided", mu = 0, conf.level = 0.95)
One Sample t-test
data: dat$June1234
t = 10.002, df = 20, p-value = 3.153e-09
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
4.375559 6.681584
sample estimates:
mean of x
5.528571