library(lavaan)
setwd(mypath) # change it to the path of your own data folder
mediation.data <- read.table("Mediation_Exercise_data.csv", sep = ",", header = F)
colnames(mediation.data) <- c("climate",
"control",
"burnout",
"attitude",
"educout",
"psychout")
mediation.model <- '
burnout ~ a*climate + b*control
attitude ~ c*burnout + d*climate + e*control
educout ~ f*attitude
psychout ~ g*attitude
educout ~~ psychout
ac := a*c
bc := b*c
fd := f*d
fe := f*e
fc := f*c
gd := g*d
ge := g*e
gc := g*c
'
mediation.fit <- sem(mediation.model, data = mediation.data, se = "bootstrap")
summary(mediation.fit, fit.measures = T, standardized = T)
## lavaan 0.6.5 ended normally after 42 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 12
##
## Number of observations 109
##
## Model Test User Model:
##
## Test statistic 3.885
## Degrees of freedom 6
## P-value (Chi-square) 0.692
##
## Model Test Baseline Model:
##
## Test statistic 192.120
## Degrees of freedom 14
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000
## Tucker-Lewis Index (TLI) 1.028
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1101.180
## Loglikelihood unrestricted model (H1) -1099.238
##
## Akaike (AIC) 2226.361
## Bayesian (BIC) 2258.657
## Sample-size adjusted Bayesian (SABIC) 2220.739
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.096
## P-value H_0: RMSEA <= 0.050 0.809
## P-value H_0: RMSEA >= 0.080 0.088
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.032
##
## Parameter Estimates:
##
## Standard errors Bootstrap
## Number of requested bootstrap draws 1000
## Number of successful bootstrap draws 1000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## burnout ~
## climate (a) -0.380 0.082 -4.630 0.000 -0.380 -0.409
## control (b) 0.292 0.091 3.220 0.001 0.292 0.249
## attitude ~
## burnout (c) 0.025 0.011 2.264 0.024 0.025 0.232
## climate (d) 0.015 0.009 1.591 0.112 0.015 0.150
## control (e) -0.056 0.012 -4.683 0.000 -0.056 -0.443
## educout ~
## attitude (f) 2.215 0.290 7.645 0.000 2.215 0.633
## psychout ~
## attitude (g) 3.447 0.319 10.795 0.000 3.447 0.691
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .educout ~~
## .psychout 1.139 0.983 1.159 0.246 1.139 0.105
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .burnout 67.858 8.124 8.353 0.000 67.858 0.719
## .attitude 0.886 0.106 8.395 0.000 0.886 0.799
## .educout 8.166 1.018 8.021 0.000 8.166 0.600
## .psychout 14.411 1.781 8.092 0.000 14.411 0.522
##
## Defined Parameters:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## ac -0.010 0.005 -2.021 0.043 -0.010 -0.095
## bc 0.007 0.004 1.753 0.080 0.007 0.058
## fd 0.033 0.022 1.522 0.128 0.033 0.095
## fe -0.125 0.032 -3.893 0.000 -0.125 -0.281
## fc 0.056 0.026 2.116 0.034 0.056 0.147
## gd 0.052 0.033 1.572 0.116 0.052 0.103
## ge -0.195 0.044 -4.449 0.000 -0.195 -0.307
## gc 0.087 0.037 2.345 0.019 0.087 0.160
© Copyright 2024
@Yi Feng
and
@Gregory R. Hancock.