cormat <- '
1.00
-.03 1.00
.39 .07 1.00
-.05 -.23 -.13 1.00
-.08 -.16 -.29 .34 1.00'
Cmat <- getCov(cormat)
dat.sdev <- c(66.50,3.80,18.40,6.70,62.48)
Dmat <- diag(dat.sdev)
covmat <- Dmat %*% Cmat %*% Dmat
# assign row and column names to the covariance matrix
rownames(covmat) <- c("Exercise", "Hardy", "Fitness", "Stress", "Illness")
colnames(covmat) <- rownames(covmat)
path.model <- '
Illness~Fitness+Stress
Fitness~Exercise
Stress~Hardy
Exercise~~Hardy
'
path.fit <- sem(path.model, sample.cov = covmat, sample.nobs = 373)
summary(path.fit, fit.measures = T, standardized = T)
## lavaan 0.6.15 ended normally after 26 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 10
##
## Number of observations 373
##
## Model Test User Model:
##
## Test statistic 11.107
## Degrees of freedom 5
## P-value (Chi-square) 0.049
##
## Model Test Baseline Model:
##
## Test statistic 165.944
## Degrees of freedom 10
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.961
## Tucker-Lewis Index (TLI) 0.922
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -7968.001
## Loglikelihood unrestricted model (H1) -7962.447
##
## Akaike (AIC) 15956.002
## Bayesian (BIC) 15995.218
## Sample-size adjusted Bayesian (SABIC) 15963.491
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.057
## 90 Percent confidence interval - lower 0.003
## 90 Percent confidence interval - upper 0.103
## P-value H_0: RMSEA <= 0.050 0.336
## P-value H_0: RMSEA >= 0.080 0.236
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.051
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Illness ~
## Fitness -0.849 0.159 -5.323 0.000 -0.849 -0.253
## Stress 2.868 0.438 6.546 0.000 2.868 0.311
## Fitness ~
## Exercise 0.108 0.013 8.180 0.000 0.108 0.390
## Stress ~
## Hardy -0.406 0.089 -4.564 0.000 -0.406 -0.230
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Exercise ~~
## Hardy -7.561 13.055 -0.579 0.562 -7.561 -0.030
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .Illness 3203.954 234.610 13.657 0.000 3203.954 0.840
## .Fitness 286.295 20.964 13.657 0.000 286.295 0.848
## .Stress 42.401 3.105 13.657 0.000 42.401 0.947
## Exercise 4410.394 322.952 13.657 0.000 4410.394 1.000
## Hardy 14.401 1.055 13.657 0.000 14.401 1.000
© Copyright 2024
@Yi Feng
and
@Gregory R. Hancock.