library(lavaan)
cormat <- '
1.000
0.725 1.000
0.595 0.705 1.000
0.566 0.624 0.706 1.000
'
smeans <- c(1.338,1.591,2.019,2.364)
sdev <- c(1.260,1.334,1.440,1.376)
Cmat <- getCov(cormat)
Dmat <- diag(sdev)
covmat <- Dmat %*% Cmat %*% Dmat
colnames(covmat) <- c('alc12', 'alc14', 'alc16', 'alc18')
rownames(covmat) <- colnames(covmat)
linear.model <- '
final =~ 1*alc12 + 1*alc14 + 1*alc16 + 1*alc18
slope =~ (-6)*alc12 + (-4)*alc14 + (-2)*alc16 + 0*alc18
alc14 ~~ alc16
'
linear.fit <- growth(linear.model, sample.cov = covmat, sample.mean = smeans, sample.nobs = 357)
summary(linear.fit, fit.measures = T, standardized = T)
## lavaan 0.6.15 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 10
##
## Number of observations 357
##
## Model Test User Model:
##
## Test statistic 5.292
## Degrees of freedom 4
## P-value (Chi-square) 0.259
##
## Model Test Baseline Model:
##
## Test statistic 799.900
## Degrees of freedom 6
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.998
## Tucker-Lewis Index (TLI) 0.998
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -2056.451
## Loglikelihood unrestricted model (H1) -2053.804
##
## Akaike (AIC) 4132.901
## Bayesian (BIC) 4171.679
## Sample-size adjusted Bayesian (SABIC) 4139.954
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.030
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.090
## P-value H_0: RMSEA <= 0.050 0.630
## P-value H_0: RMSEA >= 0.080 0.096
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.020
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## final =~
## alc12 1.000 1.269 1.011
## alc14 1.000 1.269 0.938
## alc16 1.000 1.269 0.878
## alc18 1.000 1.269 0.925
## slope =~
## alc12 -6.000 -1.020 -0.813
## alc14 -4.000 -0.680 -0.503
## alc16 -2.000 -0.340 -0.235
## alc18 0.000 0.000 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .alc14 ~~
## .alc16 0.201 0.054 3.747 0.000 0.201 0.286
## final ~~
## slope 0.108 0.021 5.117 0.000 0.500 0.500
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .alc12 0.000 0.000 0.000
## .alc14 0.000 0.000 0.000
## .alc16 0.000 0.000 0.000
## .alc18 0.000 0.000 0.000
## final 2.359 0.072 32.826 0.000 1.860 1.860
## slope 0.173 0.011 15.995 0.000 1.017 1.017
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .alc12 0.217 0.076 2.844 0.004 0.217 0.138
## .alc14 0.618 0.062 9.914 0.000 0.618 0.338
## .alc16 0.795 0.076 10.415 0.000 0.795 0.381
## .alc18 0.271 0.092 2.946 0.003 0.271 0.144
## final 1.609 0.154 10.464 0.000 1.000 1.000
## slope 0.029 0.005 6.209 0.000 1.000 1.000
© Copyright 2024
@Yi Feng
and
@Gregory R. Hancock.