In this tutorial, we are going to use lavaan to fit
nonlinear latent growth models.
library(lavaan)
library(semPlot)lower <- '
93.650 
79.637 93.564 
72.890 87.718 95.732 
62.623 76.941 81.886 86.054 
53.342 63.803 69.612 70.611 73.666 
43.820 50.644 54.443 56.446 58.353 59.154 
35.183 41.099 46.016 45.494 49.900 46.163 54.169 
39.839 44.099 46.105 44.074 48.345 45.847 49.329 60.528 
35.497 39.169 42.262 39.429 42.954 42.950 47.120 54.570 66.183
'
smeans <- c(20.121, 25.521, 29.321, 32.400, 34.186, 35.600, 37.729, 39.029, 38.786)
covmat <- getCov(lower)
rownames(covmat) <- colnames(covmat) <- paste0('V', 1:9)
linear.model <- '
interc =~ 1*V1 + 1*V2 + 1*V3 + 1*V4 + 1*V5 + 1*V6 + 1*V7 + 1*V8 + 1*V9
slope =~ 0*V1 + 1*V2 + 2*V3 + 3*V4 + 4*V5 + 5*V6 + 6*V7 + 7*V8 + 8*V9
'
linear.fit <- growth(linear.model, sample.cov=covmat, sample.mean=smeans, sample.nobs = 140)
summary(linear.fit, fit.measures = T)## lavaan 0.6.15 ended normally after 91 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           140
## 
## Model Test User Model:
##                                                       
##   Test statistic                               413.528
##   Degrees of freedom                                40
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1702.962
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.776
##   Tucker-Lewis Index (TLI)                       0.798
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3851.973
##   Loglikelihood unrestricted model (H1)      -3645.210
##                                                       
##   Akaike (AIC)                                7731.947
##   Bayesian (BIC)                              7773.130
##   Sample-size adjusted Bayesian (SABIC)       7728.836
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.258
##   90 Percent confidence interval - lower         0.236
##   90 Percent confidence interval - upper         0.281
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.165
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc =~                                           
##     V1                1.000                           
##     V2                1.000                           
##     V3                1.000                           
##     V4                1.000                           
##     V5                1.000                           
##     V6                1.000                           
##     V7                1.000                           
##     V8                1.000                           
##     V9                1.000                           
##   slope =~                                            
##     V1                0.000                           
##     V2                1.000                           
##     V3                2.000                           
##     V4                3.000                           
##     V5                4.000                           
##     V6                5.000                           
##     V7                6.000                           
##     V8                7.000                           
##     V9                8.000                           
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc ~~                                           
##     slope            -9.629    1.526   -6.311    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                0.000                           
##    .V2                0.000                           
##    .V3                0.000                           
##    .V4                0.000                           
##    .V5                0.000                           
##    .V6                0.000                           
##    .V7                0.000                           
##    .V8                0.000                           
##    .V9                0.000                           
##     interc           24.599    0.902   27.279    0.000
##     slope             2.114    0.115   18.443    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1               59.014    7.787    7.579    0.000
##    .V2               11.063    2.057    5.378    0.000
##    .V3                8.568    1.486    5.764    0.000
##    .V4               14.757    2.002    7.372    0.000
##    .V5               12.952    1.733    7.473    0.000
##    .V6               12.023    1.639    7.334    0.000
##    .V7                8.774    1.375    6.379    0.000
##    .V8                8.675    1.612    5.381    0.000
##    .V9               25.644    3.728    6.878    0.000
##     interc          107.692   13.615    7.910    0.000
##     slope             1.574    0.220    7.139    0.000
quad.model <- '
interc =~ 1*V1 + 1*V2 + 1*V3 + 1*V4 + 1*V5 + 1*V6 + 1*V7 + 1*V8 + 1*V9
slope =~ 0*V1 + 1*V2 + 2*V3 + 3*V4 + 4*V5 + 5*V6 + 6*V7 + 7*V8 + 8*V9
quad =~ 0*V1 + 1*V2 + 4*V3 + 9*V4 + 16*V5 + 25*V6 + 36*V7 + 49*V8 + 64*V9
'
quad.fit <- growth(quad.model, sample.cov=covmat, sample.mean=smeans, sample.nobs = 140)
summary(quad.fit, fit.measures = T)## lavaan 0.6.15 ended normally after 108 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        18
## 
##   Number of observations                           140
## 
## Model Test User Model:
##                                                       
##   Test statistic                               154.710
##   Degrees of freedom                                36
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1702.962
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.929
##   Tucker-Lewis Index (TLI)                       0.929
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3722.565
##   Loglikelihood unrestricted model (H1)      -3645.210
##                                                       
##   Akaike (AIC)                                7481.129
##   Bayesian (BIC)                              7534.079
##   Sample-size adjusted Bayesian (SABIC)       7477.129
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.153
##   90 Percent confidence interval - lower         0.129
##   90 Percent confidence interval - upper         0.179
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc =~                                           
##     V1                1.000                           
##     V2                1.000                           
##     V3                1.000                           
##     V4                1.000                           
##     V5                1.000                           
##     V6                1.000                           
##     V7                1.000                           
##     V8                1.000                           
##     V9                1.000                           
##   slope =~                                            
##     V1                0.000                           
##     V2                1.000                           
##     V3                2.000                           
##     V4                3.000                           
##     V5                4.000                           
##     V6                5.000                           
##     V7                6.000                           
##     V8                7.000                           
##     V9                8.000                           
##   quad =~                                             
##     V1                0.000                           
##     V2                1.000                           
##     V3                4.000                           
##     V4                9.000                           
##     V5               16.000                           
##     V6               25.000                           
##     V7               36.000                           
##     V8               49.000                           
##     V9               64.000                           
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc ~~                                           
##     slope           -15.556    3.359   -4.631    0.000
##     quad              0.777    0.336    2.315    0.021
##   slope ~~                                            
##     quad             -0.730    0.129   -5.674    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                0.000                           
##    .V2                0.000                           
##    .V3                0.000                           
##    .V4                0.000                           
##    .V5                0.000                           
##    .V6                0.000                           
##    .V7                0.000                           
##    .V8                0.000                           
##    .V9                0.000                           
##     interc           21.348    0.918   23.260    0.000
##     slope             4.347    0.267   16.257    0.000
##     quad             -0.269    0.029   -9.188    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1               29.757    4.655    6.393    0.000
##    .V2                3.418    1.264    2.705    0.007
##    .V3                9.360    1.350    6.935    0.000
##    .V4               10.315    1.472    7.008    0.000
##    .V5                6.778    1.140    5.946    0.000
##    .V6               10.089    1.485    6.794    0.000
##    .V7                9.474    1.377    6.882    0.000
##    .V8                8.254    1.416    5.828    0.000
##    .V9                7.344    2.441    3.009    0.003
##     interc          111.181   14.160    7.852    0.000
##     slope             7.587    1.220    6.221    0.000
##     quad              0.088    0.015    5.902    0.000
spline.model1 <- '
interc =~ 1*V1 + 1*V2 + 1*V3 + 1*V4 + 1*V5 + 1*V6 + 1*V7 + 1*V8 + 1*V9
slope1 =~ 0*V1 + 1*V2 + 2*V3 + 3*V4 + 4*V5 + 4*V6 + 4*V7 + 4*V8 + 4*V9
slope2 =~ 0*V1 + 0*V2 + 0*V3 + 0*V4 + 0*V5 + 1*V6 + 2*V7 + 3*V8 + 4*V9
'
spline.fit1 <- growth(spline.model1, sample.cov = covmat, sample.mean = smeans, sample.nobs = 140)
summary(spline.fit1, fit.measures = T)## lavaan 0.6.15 ended normally after 117 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        18
## 
##   Number of observations                           140
## 
## Model Test User Model:
##                                                       
##   Test statistic                               172.011
##   Degrees of freedom                                36
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1702.962
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.918
##   Tucker-Lewis Index (TLI)                       0.918
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3731.215
##   Loglikelihood unrestricted model (H1)      -3645.210
##                                                       
##   Akaike (AIC)                                7498.430
##   Bayesian (BIC)                              7551.379
##   Sample-size adjusted Bayesian (SABIC)       7494.430
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.164
##   90 Percent confidence interval - lower         0.140
##   90 Percent confidence interval - upper         0.189
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.119
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc =~                                           
##     V1                1.000                           
##     V2                1.000                           
##     V3                1.000                           
##     V4                1.000                           
##     V5                1.000                           
##     V6                1.000                           
##     V7                1.000                           
##     V8                1.000                           
##     V9                1.000                           
##   slope1 =~                                           
##     V1                0.000                           
##     V2                1.000                           
##     V3                2.000                           
##     V4                3.000                           
##     V5                4.000                           
##     V6                4.000                           
##     V7                4.000                           
##     V8                4.000                           
##     V9                4.000                           
##   slope2 =~                                           
##     V1                0.000                           
##     V2                0.000                           
##     V3                0.000                           
##     V4                0.000                           
##     V5                0.000                           
##     V6                1.000                           
##     V7                2.000                           
##     V8                3.000                           
##     V9                4.000                           
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc ~~                                           
##     slope1          -12.985    2.243   -5.790    0.000
##     slope2           -6.891    1.807   -3.813    0.000
##   slope1 ~~                                           
##     slope2           -0.125    0.335   -0.374    0.708
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                0.000                           
##    .V2                0.000                           
##    .V3                0.000                           
##    .V4                0.000                           
##    .V5                0.000                           
##    .V6                0.000                           
##    .V7                0.000                           
##    .V8                0.000                           
##    .V9                0.000                           
##     interc           22.458    0.908   24.727    0.000
##     slope1            3.048    0.172   17.693    0.000
##     slope2            1.269    0.160    7.937    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1               36.964    5.047    7.324    0.000
##    .V2                1.403    1.241    1.130    0.258
##    .V3               10.209    1.400    7.292    0.000
##    .V4               11.270    1.520    7.414    0.000
##    .V5                3.996    1.192    3.353    0.001
##    .V6                9.389    1.337    7.021    0.000
##    .V7                9.575    1.353    7.076    0.000
##    .V8                7.067    1.384    5.106    0.000
##    .V9               11.736    2.438    4.814    0.000
##     interc          112.909   13.915    8.114    0.000
##     slope1            3.697    0.516    7.160    0.000
##     slope2            2.949    0.435    6.782    0.000spline.model2 <- '
interc =~ 1*V1 + 1*V2 + 1*V3 + 1*V4 + 1*V5 + 1*V6 + 1*V7 + 1*V8 + 1*V9
slope1 =~ 0*V1 + 1*V2 + 2*V3 + 3*V4 + 3*V5 + 3*V6 + 3*V7 + 3*V8 + 3*V9
slope2 =~ 0*V1 + 0*V2 + 0*V3 + 0*V4 + 1*V5 + 2*V6 + 3*V7 + 4*V8 + 5*V9
'
spline.fit2 <- growth(spline.model2, sample.cov = covmat, sample.mean = smeans, sample.nobs = 140)
summary(spline.fit2, fit.measures = T)## lavaan 0.6.15 ended normally after 109 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        18
## 
##   Number of observations                           140
## 
## Model Test User Model:
##                                                       
##   Test statistic                               158.440
##   Degrees of freedom                                36
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1702.962
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.927
##   Tucker-Lewis Index (TLI)                       0.927
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3724.429
##   Loglikelihood unrestricted model (H1)      -3645.210
##                                                       
##   Akaike (AIC)                                7484.859
##   Bayesian (BIC)                              7537.809
##   Sample-size adjusted Bayesian (SABIC)       7480.859
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.156
##   90 Percent confidence interval - lower         0.132
##   90 Percent confidence interval - upper         0.181
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.089
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc =~                                           
##     V1                1.000                           
##     V2                1.000                           
##     V3                1.000                           
##     V4                1.000                           
##     V5                1.000                           
##     V6                1.000                           
##     V7                1.000                           
##     V8                1.000                           
##     V9                1.000                           
##   slope1 =~                                           
##     V1                0.000                           
##     V2                1.000                           
##     V3                2.000                           
##     V4                3.000                           
##     V5                3.000                           
##     V6                3.000                           
##     V7                3.000                           
##     V8                3.000                           
##     V9                3.000                           
##   slope2 =~                                           
##     V1                0.000                           
##     V2                0.000                           
##     V3                0.000                           
##     V4                0.000                           
##     V5                1.000                           
##     V6                2.000                           
##     V7                3.000                           
##     V8                4.000                           
##     V9                5.000                           
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc ~~                                           
##     slope1           -9.999    2.432   -4.112    0.000
##     slope2           -7.849    1.671   -4.697    0.000
##   slope1 ~~                                           
##     slope2           -0.363    0.374   -0.970    0.332
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                0.000                           
##    .V2                0.000                           
##    .V3                0.000                           
##    .V4                0.000                           
##    .V5                0.000                           
##    .V6                0.000                           
##    .V7                0.000                           
##    .V8                0.000                           
##    .V9                0.000                           
##     interc           21.471    0.876   24.508    0.000
##     slope1            3.781    0.205   18.429    0.000
##     slope2            1.449    0.149    9.695    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1               25.455    4.207    6.051    0.000
##    .V2                4.277    1.350    3.169    0.002
##    .V3                8.643    1.272    6.797    0.000
##    .V4                6.259    1.376    4.548    0.000
##    .V5                7.983    1.219    6.548    0.000
##    .V6               11.116    1.500    7.411    0.000
##    .V7                9.711    1.397    6.952    0.000
##    .V8                6.363    1.353    4.703    0.000
##    .V9               15.523    2.682    5.788    0.000
##     interc          100.209   12.905    7.765    0.000
##     slope1            4.339    0.725    5.984    0.000
##     slope2            2.676    0.376    7.119    0.000spline.model3 <- '
interc =~ 1*V1 + 1*V2 + 1*V3 + 1*V4 + 1*V5 + 1*V6 + 1*V7 + 1*V8 + 1*V9
slope1 =~ 0*V1 + 1*V2 + 2*V3 + 2*V4 + 2*V5 + 2*V6 + 2*V7 + 2*V8 + 2*V9
slope2 =~ 0*V1 + 0*V2 + 0*V3 + 1*V4 + 2*V5 + 3*V6 + 4*V7 + 5*V8 + 6*V9
'
spline.fit3 <- growth(spline.model3, sample.cov = covmat, sample.mean = smeans, sample.nobs = 140)
summary(spline.fit3, fit.measures = T)## lavaan 0.6.15 ended normally after 103 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        18
## 
##   Number of observations                           140
## 
## Model Test User Model:
##                                                       
##   Test statistic                               205.005
##   Degrees of freedom                                36
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1702.962
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.899
##   Tucker-Lewis Index (TLI)                       0.899
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3747.712
##   Loglikelihood unrestricted model (H1)      -3645.210
##                                                       
##   Akaike (AIC)                                7531.425
##   Bayesian (BIC)                              7584.374
##   Sample-size adjusted Bayesian (SABIC)       7527.425
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.183
##   90 Percent confidence interval - lower         0.159
##   90 Percent confidence interval - upper         0.208
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.067
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc =~                                           
##     V1                1.000                           
##     V2                1.000                           
##     V3                1.000                           
##     V4                1.000                           
##     V5                1.000                           
##     V6                1.000                           
##     V7                1.000                           
##     V8                1.000                           
##     V9                1.000                           
##   slope1 =~                                           
##     V1                0.000                           
##     V2                1.000                           
##     V3                2.000                           
##     V4                2.000                           
##     V5                2.000                           
##     V6                2.000                           
##     V7                2.000                           
##     V8                2.000                           
##     V9                2.000                           
##   slope2 =~                                           
##     V1                0.000                           
##     V2                0.000                           
##     V3                0.000                           
##     V4                1.000                           
##     V5                2.000                           
##     V6                3.000                           
##     V7                4.000                           
##     V8                5.000                           
##     V9                6.000                           
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc ~~                                           
##     slope1           -7.769    3.312   -2.346    0.019
##     slope2           -6.923    1.424   -4.862    0.000
##   slope1 ~~                                           
##     slope2           -1.240    0.500   -2.480    0.013
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                0.000                           
##    .V2                0.000                           
##    .V3                0.000                           
##    .V4                0.000                           
##    .V5                0.000                           
##    .V6                0.000                           
##    .V7                0.000                           
##    .V8                0.000                           
##    .V9                0.000                           
##     interc           20.240    0.819   24.716    0.000
##     slope1            5.085    0.295   17.250    0.000
##     slope2            1.683    0.135   12.507    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                9.866    3.834    2.573    0.010
##    .V2                8.111    1.520    5.337    0.000
##    .V3               10.681    1.942    5.498    0.000
##    .V4                8.502    1.391    6.111    0.000
##    .V5                9.845    1.386    7.105    0.000
##    .V6               11.624    1.567    7.417    0.000
##    .V7                9.474    1.398    6.776    0.000
##    .V8                6.857    1.404    4.884    0.000
##    .V9               18.589    2.950    6.301    0.000
##     interc           86.088   11.453    7.517    0.000
##     slope1            8.661    1.647    5.260    0.000
##     slope2            2.174    0.304    7.150    0.000spline.model4 <- '
interc =~ 1*V1 + 1*V2 + 1*V3 + 1*V4 + 1*V5 + 1*V6 + 1*V7 + 1*V8 + 1*V9
slope1 =~ 0*V1 + 1*V2 + 2*V3 + 2*V4 + 2*V5 + 2*V6 + 2*V7 + 2*V8 + 2*V9
slope2 =~ 0*V1 + 0*V2 + 0*V3 + 1*V4 + 2*V5 + 3*V6 + 4*V7 + 5*V8 + 6*V9
slope3 =~ 0*V1 + 0*V2 + 0*V3 + 0*V4 + 0*V5 + 0*V6 + 1*V7 + 2*V8 + 3*V9
'
spline.fit4 <- growth(spline.model4, sample.cov = covmat, sample.mean = smeans, sample.nobs = 140)
summary(spline.fit4, fit.measures = T)## lavaan 0.6.15 ended normally after 144 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        23
## 
##   Number of observations                           140
## 
## Model Test User Model:
##                                                       
##   Test statistic                               100.459
##   Degrees of freedom                                31
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1702.962
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.958
##   Tucker-Lewis Index (TLI)                       0.952
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3695.439
##   Loglikelihood unrestricted model (H1)      -3645.210
##                                                       
##   Akaike (AIC)                                7436.878
##   Bayesian (BIC)                              7504.536
##   Sample-size adjusted Bayesian (SABIC)       7431.767
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.127
##   90 Percent confidence interval - lower         0.099
##   90 Percent confidence interval - upper         0.155
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.997
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc =~                                           
##     V1                1.000                           
##     V2                1.000                           
##     V3                1.000                           
##     V4                1.000                           
##     V5                1.000                           
##     V6                1.000                           
##     V7                1.000                           
##     V8                1.000                           
##     V9                1.000                           
##   slope1 =~                                           
##     V1                0.000                           
##     V2                1.000                           
##     V3                2.000                           
##     V4                2.000                           
##     V5                2.000                           
##     V6                2.000                           
##     V7                2.000                           
##     V8                2.000                           
##     V9                2.000                           
##   slope2 =~                                           
##     V1                0.000                           
##     V2                0.000                           
##     V3                0.000                           
##     V4                1.000                           
##     V5                2.000                           
##     V6                3.000                           
##     V7                4.000                           
##     V8                5.000                           
##     V9                6.000                           
##   slope3 =~                                           
##     V1                0.000                           
##     V2                0.000                           
##     V3                0.000                           
##     V4                0.000                           
##     V5                0.000                           
##     V6                0.000                           
##     V7                1.000                           
##     V8                2.000                           
##     V9                3.000                           
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc ~~                                           
##     slope1           -3.053    2.796   -1.092    0.275
##     slope2          -11.537    2.090   -5.520    0.000
##     slope3            9.383    2.776    3.381    0.001
##   slope1 ~~                                           
##     slope2           -0.788    0.678   -1.162    0.245
##     slope3           -0.627    0.931   -0.674    0.500
##   slope2 ~~                                           
##     slope3           -3.988    0.822   -4.851    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                0.000                           
##    .V2                0.000                           
##    .V3                0.000                           
##    .V4                0.000                           
##    .V5                0.000                           
##    .V6                0.000                           
##    .V7                0.000                           
##    .V8                0.000                           
##    .V9                0.000                           
##     interc           20.653    0.815   25.332    0.000
##     slope1            4.497    0.266   16.880    0.000
##     slope2            2.199    0.193   11.400    0.000
##     slope3           -1.135    0.276   -4.109    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1               16.174    3.680    4.396    0.000
##    .V2                5.626    1.240    4.538    0.000
##    .V3                4.327    1.466    2.951    0.003
##    .V4               10.102    1.427    7.079    0.000
##    .V5                7.564    1.149    6.584    0.000
##    .V6                7.130    1.513    4.712    0.000
##    .V7                8.861    1.318    6.723    0.000
##    .V8                7.794    1.408    5.537    0.000
##    .V9                9.037    2.474    3.653    0.000
##     interc           83.075   11.205    7.414    0.000
##     slope1            5.939    1.351    4.396    0.000
##     slope2            4.256    0.641    6.634    0.000
##     slope3            7.016    1.356    5.173    0.000model5 <- '
interc =~ 1*V1 + 1*V2 + 1*V3 + 1*V4 + 1*V5 + 1*V6 + 1*V7 + 1*V8 + 1*V9
slope =~ 0*V1 + 1*V2 + NA*V3 + NA*V4 + NA*V5 + NA*V6 + NA*V7 + NA*V8 + NA*V9
'
fit5 <- growth(model5, sample.cov = covmat, sample.mean = smeans, sample.nobs = 140)
summary(fit5, fit.measures = T)## lavaan 0.6.15 ended normally after 96 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           140
## 
## Model Test User Model:
##                                                       
##   Test statistic                               276.817
##   Degrees of freedom                                33
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1702.962
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.854
##   Tucker-Lewis Index (TLI)                       0.840
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3783.618
##   Loglikelihood unrestricted model (H1)      -3645.210
##                                                       
##   Akaike (AIC)                                7609.236
##   Bayesian (BIC)                              7671.011
##   Sample-size adjusted Bayesian (SABIC)       7604.570
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.230
##   90 Percent confidence interval - lower         0.205
##   90 Percent confidence interval - upper         0.255
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.134
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc =~                                           
##     V1                1.000                           
##     V2                1.000                           
##     V3                1.000                           
##     V4                1.000                           
##     V5                1.000                           
##     V6                1.000                           
##     V7                1.000                           
##     V8                1.000                           
##     V9                1.000                           
##   slope =~                                            
##     V1                0.000                           
##     V2                1.000                           
##     V3                1.872    0.144   13.018    0.000
##     V4                2.635    0.236   11.177    0.000
##     V5                3.227    0.304   10.623    0.000
##     V6                3.657    0.355   10.287    0.000
##     V7                4.245    0.426    9.958    0.000
##     V8                4.499    0.459    9.798    0.000
##     V9                4.499    0.463    9.721    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   interc ~~                                           
##     slope           -17.920    3.803   -4.712    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1                0.000                           
##    .V2                0.000                           
##    .V3                0.000                           
##    .V4                0.000                           
##    .V5                0.000                           
##    .V6                0.000                           
##    .V7                0.000                           
##    .V8                0.000                           
##    .V9                0.000                           
##     interc           21.658    1.042   20.777    0.000
##     slope             3.848    0.518    7.423    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .V1               36.932    5.210    7.089    0.000
##    .V2                3.583    1.410    2.541    0.011
##    .V3               10.788    1.539    7.008    0.000
##    .V4               16.544    2.122    7.797    0.000
##    .V5               12.823    1.696    7.562    0.000
##    .V6               11.437    1.580    7.239    0.000
##    .V7                7.488    1.284    5.834    0.000
##    .V8               10.658    1.702    6.263    0.000
##    .V9               19.512    2.698    7.233    0.000
##     interc          121.309   15.592    7.780    0.000
##     slope             4.444    1.254    3.544    0.000